Probability Distributions

Random Variable

- A random variable x takes on a defined set of values with different probabilities.
- For example, if you roll a die, the outcome is random (not fixed) and there are 6 possible outcomes, each of which occur with probability one-sixth.
- Tossing of a coin

- Roughly, probability is how frequently we expect different outcomes to occur if we repeat the experiment over and over ("frequentist" view)

Two Types of Random Variables

- Discrete random variables
- Number of sales
- Number of calls
- Shares of stock
- People in line
- Mistakes per page

- Continuous random variables
- Length
- Depth
- Volume
- Time
- Weight

Probability functions

- A probability function maps the possible values of x against their respective probabilities of occurrence, $p(x)$
- $p(x)$ is a number from 0 to 1.0 .
- The area under a probability function is always 1.

Discrete example: roll of a die

Cumulative distribution function (CDF)

Practice Problem:

- The number of ships to arrive at a harbor on any given day is a random variable represented by x. The probability distribution for x is:

x	10	11	12	13	14
$P(x)$.4	.2	.2	.1	.1

Find the probability that on a given day:
a. exactly 14 ships arrive $\quad p(x=14)=.1$
b. At least 12 ships arrive $\quad p(x \geq 12)=(.2+.1+.1)=.4$
c. At most 11 ships arrive

$$
p(x \leq 11)=(.4+.2)=.6
$$

Continuous case

- The probability function that accompanies a continuous random variable is a continuous mathematical function that integrates to 1 .
- For example, recall the negative exponential function (in probability, this is called an "exponential distribution"):

$$
f(x)=e^{-x}
$$

- This function integrates to 1 :

$$
\int_{0}^{+\infty} e^{-x}=-\left.e^{-x}\right|_{0} ^{+\infty}=0+1=1
$$

Continuous case: "probability density function" (pdf)

For example, the probability of x falling within 1 to 2 :

$$
\mathrm{P}(1 \leq \mathrm{x} \leq 2)=\int_{1}^{2} e^{-x}=-\left.e^{-x}\right|_{1} ^{2}=-e^{-2}--e^{-1}=-.135+.368=.23
$$

Expected Value and Variance

- All probability distributions are characterized by an expected value (mean) and a variance (standard deviation squared).

Expected value of a random variable

- Expected value is just the average or mean (μ) of random variable x.
- It's sometimes called a "weighted average" because more frequent values of X are weighted more highly in the average.
- It's also how we expect X to behave on-average over the long run ("frequentist" view again).

Expected value, formally

Discrete case:

$$
E(X)=\sum_{\text {all } \mathrm{x}} x_{i} p\left(x_{i}\right)
$$

Continuous case:

$$
E(X)=\int_{\text {all }} x_{i} p\left(x_{i}\right) d x
$$

Gambling (or how casinos can afford to give so many free drinks...)

A roulette wheel has the numbers 1 through 36 , as well as 0 and 00 . If you bet $\$ 1$ that an odd number comes up, you win or lose $\$ 1$ according to whether or not that event occurs. If random variable X denotes your net gain, $X=1$ with probability $18 / 38$ and $X=-1$ with probability $20 / 38$.
$E(X)=1(18 / 38)-1(20 / 38)=-\$.053$

On average, the casino wins (and the player loses) 5 cents per game.
The casino rakes in even more if the stakes are higher:
$E(X)=10(18 / 38)-10(20 / 38)=-\$.53$

If the cost is $\$ 10$ per game, the casino wins an average of 53 cents per game. If 10,000 games are played in a night, that's a cool $\$ 5300$.

Variance/standard deviation

$$
\sigma^{2}=\operatorname{Var}(x)=E(x-\mu)^{2}
$$

"The expected (or average) squared distance (or deviation) from the mean"

$$
\sigma^{2}=\operatorname{Var}(x)=E\left[(x-\mu)^{2}\right]=\sum_{\text {all } \mathrm{x}}\left(x_{i}-\mu\right)^{2} p\left(x_{i}\right)
$$

Variance, continuous

Discrete case:

$$
\operatorname{Var}(X)=\sum_{\text {all } \mathrm{x}}\left(x_{i}-\mu\right)^{2} p\left(x_{i}\right)
$$

Continuous case?:

$$
\operatorname{Var}(X)=\int_{\text {all } \mathrm{x}}\left(x_{i}-\mu\right)^{2} p\left(x_{i}\right) d x
$$

Practice Problem

On the roulette wheel, $X=1$ with probability $18 / 38$ and $X=-1$ with probability $20 / 38$. We already calculated the mean to $\mathrm{be}=-\$.053$. What's the variance of X ?

Answer

$$
\begin{aligned}
\sigma^{2}= & \sum_{\text {all }}\left(x_{i}-\mu\right)^{2} p\left(x_{i}\right) \\
& =(+1--.053)^{2}(18 / 38)+(-1--.053)^{2}(20 / 38) \\
& =(1.053)^{2}(18 / 38)+(-1+.053)^{2}(20 / 38) \\
& =(1.053)^{2}(18 / 38)+(-.947)^{2}(20 / 38) \\
& =.997 \\
\sigma & =\sqrt{.997}=.99
\end{aligned}
$$

Standard deviation is \$.99. Interpretation: On average, you're either 1 dollar above or 1 dollar below the mean.

Important discrete distributions

Binomial Probability Distribution

A binomial random variable \boldsymbol{X} is defined to the number of "successes" in n independent trials where the $P($ "success") $=p$ is constant.

Notation: $X \sim \operatorname{BIN}(n, p)$
In the definition above notice the following conditions need to be satisfied for a binomial experiment:

1. There is a fixed number of n trials carried out.
2. The outcome of a given trial is either a "success" or "failure".
3. The probability of success (p) remains constant from trial to trial.
4. The trials are independent, the outcome of a trial is not affected by the outcome of any other trial.

B.D Pmf

- If $X \sim \operatorname{BIN}(n, p)$, then

$$
P(X=x)=\binom{n}{x} p^{x}(1-p)^{n-x}=\frac{n!}{x!(n-x)!} p^{x}(1-p)^{n-x} \quad x=0,1, \ldots, n
$$

\mathfrak{E} ©amples:::

(1) Tossing a coin and considering heads as success and tails as failure.
(2) Checking items from a production line: success $=$ not defective, failure $=$ defective .
(3) Phoning a call centre: success $=$ operator free; failure $=$ no operator free.

Example: Treatment of Kidney Cancer

- Suppose we have $n=40$ patients who will be receiving an experimental therapy which is believed to be better than current treatments which historically have had a 5 -year survival rate of 20%, i.e. the probability of 5 -year survival is
$p=.20$.
- Thus the number of patients out of 40 in our study surviving at least 5 years has a binomial distribution, i.e. $X \sim \operatorname{BIN}(40, .20)$.

The Poisson Distribution

- The probability that there are r occurrences in a given interval is given by λ^{r}
Where,

$$
\frac{\Lambda}{r!} \mathrm{e}^{-\lambda}
$$

$\lambda=$ Mean no. of occurrences in a time interval $r=$ No. of trials.

EXAMPLES:

1. Number of telephone calls in a week.
2. Number of people arriving at a checkout in a day.
3. Number of industrial accidents per month in a manufacturing plant.

GEOMETRIC DISTRIBUTION

- The probability distribution of the number X of Bernoulli trials needed to get one success, supported on the set $\{1,2,3, \ldots\}$
- The probability of success on each trial is p , then the probability that the kth trial (out of k trials) is the first success is

$$
\operatorname{Pr}(X=k)=(1-p)^{k-1} p
$$

for $k=1,2,3, \ldots$.

Examples of Geometric PDF

- First car arriving at a service station that needs brake work
- Flipping a coin until the first tail is observed
- First plane arriving at an airport that needs repair
- Number of house showings before a sale is concluded

The Hypergeometric Distribution

- Randomly draw n elements from a set of N elements, without replacement. Assume there are r successes and N-r failures in the N elements.
- The hypergeometric random variable is the number of successes, x, drawn from the r available in the n selections.

The Hypergeometric Distribution

$$
P(x)=\frac{\binom{r}{x}\binom{N-r}{n-x}}{\binom{N}{n}}
$$

where
$N=$ the total number of elements
$r=$ number of successes in the N elements
$n=$ number of elements drawn
$X=$ the number of successes in the n elements

Uniform Distribution

- Consider the uniform probability distribution
- It is described by the function:

$$
f(x)=\frac{1}{b-a}, \text { where } a \leq x \leq b
$$

The Normal Distribution

- The normal distribution is the most important of all probability distributions. The probability density function of a normal random variable is given by:

$$
f(x)=\frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^{2}} \quad-\infty<x<\infty
$$

- It looks like this:
- Bell shaped,

- Symmetrical around the mean μ

Exponential Distribution

- The exponential distribution which has this probability density function:

$$
f(x)=\lambda e^{-\lambda x}, \quad x \geq 0
$$

Gamma Distribution

A continuous random variable X is said to have a gamma distribution if the probability density function of X is

$$
f(x)=\frac{1}{\beta^{\alpha} \Gamma(\alpha)} x^{\alpha-1} e^{-\frac{x}{\beta}} \text { for } \quad x \geq 0
$$

where the parameters α and β satisfy $\alpha>0, \beta>0$.

Beta Distribution

A random variable X is said to have a beta distribution with parameters α, β if the pdf of X is

Beta - 1
$f(x)=\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha) \Gamma(\beta)} x^{\alpha-1}(1-x)^{\beta-1}, 0<x<1$
Beta - 2

$$
f(x)=\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha) \Gamma(\beta)} x^{\alpha-1}(1+x)^{-(\alpha+\beta)}, x>0
$$

THANK YOU

